1.

Find the volume of a solid whose base is bounded by $x^2 + y^2 = 16$ with cross sections perpendicular to the x-axis that are equilateral triangles.

3.

The base of a solid is bounded by $y = x^2$ and y = 4. Find the volume of the solid if cross sections perpendicular to the x-axis are squares.

5.

The base of a solid is bounded by $x = y^2$ and x = 16. Find the volume if cross sections perpendicular to the x-axis are isosceles right triangles with one congruent side in the xy-plane.

Find the volume of the solid with base bounded by the graphs of $y=-x^2+2$ and y=-x with cross sections perpendicular to the x-axis that are rectangles of height 3.

4.

The base of a solid is bounded by $y = x^2$ and y = 4. Find the volume of the solid if cross sections perpendicular to the y-axis are semi-circles.

6.

The base of a solid is the region enclosed by the ellipse $9x^2 + y^2 = 9$. Find the volume of the solid if cross sections perpendicular to the *y*-axis are squares.

Use the method of cylindrical shells to find the volume of the solid generated by rotating around the Y-axis.

1.
$$y = x^2$$
,
 $y = 0, x = 2$

© 2015 joans kessler

distancemath.com

Use the method of cylindrical shells to find the volume of the solid generated by rotating around the y-axis.

2.
$$x = y^2$$
,
 $y = 0, x = 4$

@ 2015 joans kessler

distancemath.com

Use the method of cylindrical shells to find the volume of the solid generated by rotating around the y-axis.

3.
$$y = 25 - x^2$$
, $y = 0$

@ 2015 joans kessler

distancemath.com

Use the method of cylindrical shells to find the volume of the solid generated by rotating around the y-axis.

4.
$$y = 2x^2$$
, $y = 8$

@ 2015 joans kessler

distancemath.com

Use the method of cylindrical shells to find the volume of the solid generated by rotating around the y-axis.

5.
$$y = 4x^2 - x^3$$
, $y = 0$

© 2015 joans kessler

distancemath.com

Volume of Revolutions Task Card Answers

 $1)8\pi$

2) $128\pi / 5$

3) $625\pi/2$

 $4)16\pi$

5) 512 π /5

© 2015 joans kessler

distancemath.com