## **Unit 1 AP Questions**

AP Calculus

Name \_\_\_\_\_

**No Calculator.** Show your work on a separate piece of paper.

- 1. For  $x \ge 0$ , the horizontal line y = 2 is an asymptote for the graph of the function f. Which of the following statements must be true?
  - (A) f(0) = 2
  - (B)  $f(x) \neq 2$  for all  $x \geq 0$
  - (C) f(2) is undefined.
  - (D)  $\lim_{x\to 2} f(x) = \infty$
  - (E)  $\lim_{x \to \infty} f(x) = 2$
- $\lim_{x \to \infty} \frac{x^3 2x^2 + 3x 4}{4x^3 3x^2 + 2x 1} =$
- (A) 4 (B) 1 (C)  $\frac{1}{4}$
- (D) 0
- (E) -1
- 3. For which of the following does  $\lim_{x\to 4} f(x)$  exist?









- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only
- $\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$  is

  - (A) -3 (B) -2
- (C) 2
- (D) 3
- (E) nonexistent

- $\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 16x^2}$  is
  - (A)  $-\frac{1}{2}$  (B) 0 (C) 1
- (D)  $\frac{5}{3}$
- (E) nonexistent



Graph of f

The figure above shows the graph of a function f with domain  $0 \le x \le 4$ . Which of the following statements are true?

- I.  $\lim_{x\to 2^-} f(x)$  exists.
- II.  $\lim_{x\to 2^+} f(x)$  exists.
- III.  $\lim_{x\to 2} f(x)$  exists.
- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

7.

$$f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2} & \text{for } x \neq 2\\ k & \text{for } x = 2 \end{cases}$$

Let f be the function defined above. For what value of k is f continuous at x = 2?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 5

8. The function f is defined by  $f(x) = \sqrt{25 - x^2}$  for  $-5 \le x \le 5$ . Let g be the function defined by  $g(x) = \begin{cases} f(x) & \text{for } -5 \le x \le -3 \\ x + 7 & \text{for } -3 < x \le 5. \end{cases}$ 

Is g continuous at x = -3? Use the definition of continuity to explain your answer.

Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5-x & \text{for } 3 < x \le 5 \end{cases}$$

Is f continuous at x = 3? Explain why or why not.

10. Let f be a function defined by  $f(x) = \begin{cases} 1 - 2\sin x & \text{for } x \le 0 \\ e^{-4x} & \text{for } x > 0. \end{cases}$ 

Show that f is continuous at x = 0.