\qquad
Pre-Calculus

I. Evaluating Arithmetic Sequences

When any two numbers in a sequence differ by a constant value, the sequence is identified as an Arithmetic Sequence.
An arithmetic sequence may be defined recursively as: $\quad a_{1}=a, \quad a_{n}-a_{n-1}=d$ For an arithmetic sequence $\left\{a_{n}\right\}$ whose first term is a_{1} and common difference is d, the nth term is determined by the formula: $a_{n}=a_{n-1}+d$

Determine if the sequence is arithmetic, what is the common difference?

1. $4,6,8,10, \ldots$
2. $\left\{s_{n}\right\}=\{3 n+5\}$
3. $\left\{\dagger_{n}\right\}=\{4-n\}$

For an arithmetic sequence $\left\{a_{n}\right\}$ whose first term is a_{1} and common difference is d, the $n t h$ term is determined by the formula: $a_{n}=a_{1}+(n-1) d$
4. Find the forty-first term of the arithmetic sequence: $2,6,10,14,18, \ldots$
5. The $8^{\text {th }}$ term of an arithmetic sequence is 75 , and the $20^{\text {th }}$ term is 39 . a. Find the first term and the common difference.
b. Give a recursive formula for the sequence.
c. What is the nth term of the sequence?

II. Finding the Sum of an Arithmetic Sequence

The sum of the first n terms of an arithmetic sequence is known as a Partial Sum of an Arithmetic Sequence. Let $\left\{a_{n}\right\}$ be an arithmetic sequence with first term a_{1} and common difference of d. The sum S_{n} of the first n terms of $\left\{a_{n}\right\}$ may be found in two ways:

$$
\begin{gathered}
S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\sum_{k=1}^{n}\left[a_{1}+(k-1) d\right] \\
O R \\
S_{n}=\frac{n}{2}\left[2 a_{n}+(n-1) d\right] \quad \rightarrow \quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
\end{gathered}
$$

1. Find the sum S_{n} of the first n terms of the sequence: $\left\{a_{n}\right\}=\{3 n+5\}$
2. Find the sum: $60+64+68+72+\ldots+120$
