\qquad

When we hear the word sequence we most likely think of a "sequence of events;" something that happens first, then second, and so on. Hey in math it is the same idea. Here a sequence deals with numerical outcomes that are first, second, and so on.
A sequence is a function f whose domain is the set of positive integers. The values $f(1), f(2)$, $f(3), \ldots$ are called terms.

I. Evaluating a Sequence

1. Find the first six terms of the sequence.

$$
\left\{a_{n}\right\}=\left\{\frac{n-1}{n}\right\}
$$

2. Find the first six terms of the sequence.

$$
\left\{b_{n}\right\}=\left\{(-1)^{n+1}\left(\frac{2}{n}\right)\right\}
$$

3. Find the first six terms of the sequence.

$$
\left\{c_{n}\right\}=\binom{n \text { if } n \text { is even }}{\frac{1}{n} \text { if } n \text { is odd }}
$$

II. Determining a sequence from a Pattern

Number the terms and see what happens between each term:
a) $e, \frac{e^{2}}{2}, \frac{e^{3}}{3}, \frac{e^{4}}{4}, \ldots$
b) $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
C) $1,3,5,7, \ldots$
d) $1,4,9,16,25, \ldots$
e) $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots$

III. Factorials

A factorial is a product of every integer from 1 to the number n.

$$
\mathrm{n}!=\mathrm{n}(\mathrm{n}-1) \cdot 3 \cdot 2 \cdot 1 \quad \text { for } \mathrm{n} \geq 2 \quad \text { where } 0!=1 \text { and } 1!=1
$$

Solve.

1. 9 !
2. $\frac{12!}{10!}$
3. $\frac{3!7!}{4!}$

IV. A sequence Defined by a Recursive Formula

A second way of defining a sequence is to assign a value to the first term and specify the nth term by a formula or equation that involves on or more of the terms preceding it. The sequence is defined recursively, and the formula is a recursive formula.

Write the first 5 terms of the recursive sequence

$$
u_{1}=1, u_{2}=1, u_{n}=u_{n-2}+u_{n-1}
$$

V. Sigma Notation

Given a sequence $a 1, a 2, a 3, a 4, \ldots a n$. we can write the sum of the first n terms using summation notation, or sigma notation. The notation derives its name from the Greek Letter $\boldsymbol{\Sigma}$. This corresponds to our S for "sum." The following notation is used:

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots a_{n}
$$

\boldsymbol{k} is called the index of summation, it is the starting number for the sequence.
Write out each sum.

1. $\sum_{k=1}^{10} \frac{1}{k}$
2. $\sum_{k=1}^{n} k!$

Express each sum using summation notation
3. $1^{2}+2^{2}+3^{2}+\ldots+9^{2}$
4. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}$

Properties.
If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences and c is a real number, then:

$$
\begin{gathered}
\sum_{k=1}^{n}\left(c a_{k}\right)=c \sum_{k=1}^{n} a_{k}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \quad \sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k} \\
\sum_{k=j+1}^{n} a_{k}=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{\prime} a_{k,} \quad \text { where } 0<j<n
\end{gathered}
$$

Find the sums.
5. $\sum_{k=1}^{5} k^{2}$
6. $\sum_{j=3}^{5} \frac{1}{j}$
7. $\sum_{i=5}^{10} i$
8. $\sum_{i=1}^{6} 2$

