7-4 Notes The Hyperbola Pre-Calculus

Name _____

I. Hyperbola

Hyperbola - the collection (locus) of all points in the plane, the difference of whose distances from two fixed points, called the foci, is a constant.

C. Hyperbolas centered at (h, k) with Transverse Axis parallel to a Coordinate Axis

Opens	Opens left and right Transverse axis x-axis	Opens up and down Transverse axis y-axis
Form:	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Center:	(h, k)	(<i>h</i> , <i>k</i>)
Vertices	(h+a,k)and $(h-a,k)$	(h, k + a) and $(h, k - a)$
Slope of Asymptotes	$\pm \frac{b}{a}$	$\pm \frac{a}{b}$
Equation of Asymptotes	$y-k=\pm\frac{b}{a}(x-h)^*$	$y-k=\pm\frac{a}{b}(x-h)^*$
Foci	(h+c,k), (h-c,k))	(h, k+c), (h, k-c)

6. Find an equation for the hyperbola with center at (1, -2), one focus at (4, -2), and one vertex at (3, -2).

7. Analyze and graph.
$$-x^2 + 4y^2 - 2x - 16y + 11 = 0$$

center:

vertices:

transverse axis:

foci: