\qquad
Pre-Calculus

I. Hyperbola

Hyperbola - the collection (locus) of all points in the plane, the difference of whose distances from two fixed points, called the foci, is a constant.
A. Equation of a Hyperbola centered at $(0,0)$ with Transverse Axis along the x-axis
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
where $b^{2}=c^{2}-a^{2}$
center at $(0,0)$
vertices at $(\pm a, 0)$
foci at ($\pm \mathrm{c}, 0$)
oblique asymptotes at $y= \pm \frac{b}{a} x$

1. Find an equation of the hyperbola with center at the origin, one focus at $(3,0)$ and one vertex at $(-2,0)$.
2. Analyze and graph. $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$
center:
transverse axis:
vertices:
foci:

B. Equation of a Hyperbola centered at $(0,0)$ with Transverse Axis along the y-axis
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
where $b^{2}=c^{2}-a^{2}$
center at $(0,0)$
vertices at $(0, \pm a)$
foci at $(0, \pm c)$
oblique asymptotes at $y= \pm \frac{a}{b} x$
3. Analyze and graph. $y^{2}-4 x^{2}=4$
center:
transverse axis:
vertices:
foci:

4. Find an equation of the hyperbola having one vertex at $(0,2)$ and foci at $(0,-3)$ and $(0,3)$.

5. Analyze and graph. $9 x^{2}-4 y^{2}=36$
center:
transverse axis:
vertices:
foci:

C. Hyperbolas centered at (h,k) with Transverse Axis parallel to a Coordinate Axis

Opens	Opens left and right Transverse axis x-axis	Opens up and down Transverse axis y -axis
Form:	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Center:	(h, k)	(h,k)
Vertices	$(h+a, k)$ and $(h-a, k)$	$(h, k+a)$ and $(h, k-a)$
Slope of Asymptotes	$\pm \frac{b}{a}$	$\pm \frac{a}{b}$
Equation of Asymptotes	$y-k= \pm \frac{b}{a}(x-h)^{*}$	$y-k= \pm \frac{a}{b}(x-h)^{*}$
Foci	$(h+c, k),(h-c, k))$	$(h, k+c),(h, k-c)$

6. Find an equation for the hyperbola with center at (1, -2), one focus at $(4,-2)$, and one vertex at $(3,-2)$.
7. Analyze and graph. $-x^{2}+4 y^{2}-2 x-16 y+11=0$

center:
transverse axis:
foci:
