\qquad

Conic sections are curves that result from the intersection of a cone and a plane. We will be looking at all four curves: circle, parabola, ellipse and the hyperbola.

(a) Circle

(b) Ellipse

(c) Parabola

(d) Hyperbola

I. Parabola

Parabola - a collection, or locus, of all points P in the plane that are the same distance from a fixed point as they are from a fixed line. The point F is the focus and the line is its directrix.

these distances are equal: $d(F, P)=d(P, D)$
For the parabola that opens along the x -axis:

$$
y^{2}=4 a x
$$

where:
vertex at (0,0) \& focus at ($a, 0$)
"a "is the distance from the vertex to the focus of
a parabola
A. Graphs with Vertex at (0,0)

A parabola will open onto the positive or negative x - or y-axes:
Equations of a Parabola, Vertex at $(0,0)$ and the Focus is on an Axis

equation	vertex	focus	directrix	description
$y^{2}=4 a x$	$(0,0)$	$(a, 0)$	$x=-a$	opens on the positive $x a x i s$
$y^{2}=-4 a x$	$(0,0)$	$(-a, 0)$	$x=a$	opens on the negative x-axis
$x^{2}=4 a y$	$(0,0)$	$(0, a)$	$y=-a$	open on the positive y-axis
$x^{2}=-4 a y$	$(0,0)$	$(0,-a)$	$y=a$	opens on the negative y-axis

(a) $y^{2}=4 a x$

(b) $y^{2}--4 a x$

(c) $x^{2}=4 a y$

(d)

1. Analyze the equation and graph $y^{2}=8 x$. vertex:
focus:
directrix:

2. Analyze the equation and graph $x^{2}=-12 y$. vertex:
focus:
directrix:

3. Find an equation of a parabola with a vertex at $(0,0)$ and a focus at $(3,0)$.

4. Find an equation of a parabola with a focus at $(0,4)$ and a directrix line $y=-4$.

5. Find the equation of the parabola with vertex at $(0,0)$ if its axis of symmetry is the x-axis and its graph contains the point $(-1 / 2,2)$.
B. Graphs with Vertex and (h, k)

equation	vertex	focus	directrix	description
$(y-k)^{2}=4 a(x-h)$	(h, k)	$(h+a, k)$	$x=h-a$	opens right
$(y-k)^{2}=-4 a(x-h)$	(h, k)	$(h-a, k)$	$x=h+a$	opens left
$(x-h)^{2}=4 a(y-k)$	(h, k)	$(h, k+a)$	$y=k-a$	opens up
$(x-h)^{2}=-4 a(y-k)$	(h, k)	$(h, k-a)$	$y=k+a$	opens down

6. Find an equation of the parabola with vertex at $(-2,3)$ and focus at $(0,3)$.

7. Analyze the equation and graph $x^{2}+4 x-4 y=0$. vertex:
focus:
directrix:

