Conic sections are curves that result from the intersection of a cone and a plane. We will be looking at all four curves: circle, parabola, ellipse and the hyperbola.

I. Parabola

Parabola - a collection, or locus, of all points P in the plane that are the same distance from a fixed point as they are from a fixed line. The point F is the focus and the line is its directrix. D Y

these distances are equal: d(F, P) = d(P, D)

For the parabola that opens along the x-axis: $y^{2} = 4ax$

where:

"a "is the distance from the vertex to the focus of a parabola

A. Graphs with Vertex at (0, 0)

A parabola will open onto the positive or negative x- or y-axes:

Equations of a Parabola, Vertex at (0, 0) and the Focus is on an Axis

D: x = a

x

V

equation	vertex	focus	directrix	description
$y^2 = 4ax$ $y^2 = -4ax$	(0, 0) (0, 0)	(a, 0) (-a, 0)	x = a x = - a	opens on the positive x axis opens on the negative x-axis
$x^{2} = 4ay$ $x^{2} = -4ay$	(0, 0) (0, 0)	(0, a) (0, -a)	у = а У = -а	open on the positive y-axis opens on the negative y-axis

1. Analyze	the equation and	graph $y^2 = 8x$.
vertex:		

focus:

directrix:

2. Analyze the equation and graph $x^2 = -12y$. vertex:

focus:

directrix:

.

↓^y.

+ · · · · · · ·

<u>+</u> · ·

‡ : : : : :

4

+

4. Find an equation of a parabola with a focus at (0,4) and a directrix line y = -4.

5. Find the equation of the parabola with vertex at (0, 0) if its axis of symmetry is the x-axis and its graph contains the point (- $\frac{1}{2}$, 2).

B. Graphs with Vertex and (h, k)

equation	vertex	focus	directrix	description
$(y - k)^2 = 4a(x - h)$	(h, k)	(h + a, k)	x = h – a	opens right
$(y - k)^2 = -4a(x - h)$	(h, k)	(h – a, k)	x = h + a	opens left
$(x - h)^2 = 4a(y - k)$	(h, k)	(h, k + a)	y = k - a	opens up
$(x - h)^2 = -4a(y - k)$	(h, k)	(h, k – a)	y = k +a	opens down

6. Find an equation of the parabola with vertex at (-2, 3) and focus at (0, 3).

7. Analyze the equation and graph $x^2 + 4x - 4y = 0$. vertex:

focus:

directrix:

