\qquad
Pre-Calculus

I. Dot Product

If $v=a_{1} i+b_{1} j=\left\langle a_{1}, b_{1}\right\rangle$ and $w=a_{2} i+b_{2} j=\left\langle a_{2}, b_{2}\right\rangle$ are vectors, then their dot product, denoted by $\boldsymbol{v} \cdot \boldsymbol{w}$, is defined by $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{a}_{1} \boldsymbol{a}_{2}+\boldsymbol{b}_{1} \boldsymbol{b}_{2}$

Given $v=2 i-3 j$ and $w=5 i+3 j$, find the following dot products.
1.v•w
2. w • v
3. $v \cdot v$
4. $w \cdot w$
5. \|v\|
6. \|w\|

The following properties of the Dot Product are useful in solving problems involving the Dot Product:

II. The Dot Product Theorem

If we have u and v be vectors with initial points at the origin, the angle θ that is between u and v is $0<\theta<\pi$.
Find the angle θ between $u=4 i-3 j$ and $v=2 i+5 j$.

III. Parallel \& Perpendicular

A. Orthogonal Vectors (a.k.a. perpendicular)

Two vectors v and w are orthogonal, a.k.a. perpendicular, if and only if $v \cdot w=0$

1. Determine whether the vectors are perpendicular.

$$
v=2 i-j \quad w=31+6 j
$$

B. Parallel Vectors

Two vectors v and w are parallel if they are "multiples" of each other.
Determine whether the vectors in each pair are parallel.
2. $v=2 i-j$ and $w=6 i-3 j$
3. $w=3 i+4 j$ and $r=5 i+2 j$

IV. Work

Work equals force times distance $-W=F \cdot D$
English units of force is pounds (lbs).
When the force acting on the object is at an angle, remember to break it into its horizontal and vertical components.

1. A girl is pulling a wagon with a force of 50 pounds. How much work is done in moving the wagon 100 feet if the handle makes an angle of 30 o with the ground?

