\qquad

Many concepts in science involve applications of mathematics that measure certain quantities by their magnitude like length, mass, area, temperature, or energy. Only one number is needed to describe a length of 7 inches or $5^{\circ} \mathrm{C}$ for example. This single quantity is called scalar.
There are, however, many applications that involve not only the magnitude of an object but also, the direction of the displacement.
Vector: a quantity that has both magnitude and direction. For example, the flight pattern of a plane, has both speed (magnitude) and direction of travel. Velocity, acceleration, and force are described by both magnitude and direction and are known as vectors.

(c) Directed line segment $\overrightarrow{P Q}$

1. $v-w$

2. $2 v+3 w$

II. The Position Vector

To compute magnitude and direction of a vector, we need an algebraic way to describe the vector. The algebraic vector v is: $\quad v=\langle\boldsymbol{a}, \boldsymbol{b}\rangle$

$$
v=\langle\text { horizontal }, \text { vertical }\rangle
$$

Where a and b are real (scalar) numbers and are called the components of the vector. Vector \mathbf{v}, may be described with initial point $P_{1}\left(x_{1}, y_{1}\right)$ terminal point $P_{2}\left(x_{2}, y_{2}\right)$ Vector \mathbf{v}, is equal to the position vector: $\boldsymbol{v}=\left\langle\boldsymbol{x}_{\mathbf{2}}-\boldsymbol{x}_{\mathbf{1}}, \quad \boldsymbol{y}_{\mathbf{2}}-\boldsymbol{y}_{\mathbf{1}}\right\rangle$

Find the position vector \mathbf{v} with initial point $(-1,2)$ and terminal point $(4,6)$.

III. Vectors in terms of \mathbf{i} and \mathbf{j}

A vector of length $\mathbf{1}$ is called a unit vector. Let " i " be a unit vector in the x-direction and " j " be a unit vector in the y-direction. Any vector in the x-direction can be written as a scalar multiple of \mathbf{i} and any vector in the y-direction can be written as a scalar multiple of \mathbf{j}. They are defined as:

$$
\begin{gathered}
\boldsymbol{i}=\langle\mathbf{1}, \mathbf{0}\rangle \text { and } \boldsymbol{j}=\langle\mathbf{0}, \mathbf{1}\rangle, \text { where }\|i\|=\sqrt{1^{2}+0^{2}} \text { and }\|j\|=\sqrt{0^{2}+1^{2}} . \\
v=\langle a, b\rangle=a\langle 1,0\rangle+b\langle 0,1\rangle=a \boldsymbol{i}+b \boldsymbol{j} \\
{ }^{* *} \text { Any vector may be expressed in terms of } \mathbf{i} \text { and } \mathbf{j} .{ }^{* *}
\end{gathered}
$$

A. Algebraic Operations

Vectors may be added, subtracted, or have scalar multiplication. Pretty straight forward, we can treat the numbers as coefficients and i and j as variables.

Let $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}=\left\langle a_{1}, b_{1}\right\rangle$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}=\left\langle a_{2}, b_{2}\right\rangle$ be two vectors, and let α be a scalar. Then

$$
\begin{align*}
\mathbf{v}+\mathbf{w} & =\left(a_{1}+a_{2}\right) \mathbf{i}+\left(b_{1}+b_{2}\right) \mathbf{j}=\left\langle a_{1}+a_{2}, b_{1}+b_{2}\right\rangle \tag{2}\\
\mathbf{v}-\mathbf{w} & =\left(a_{1}-a_{2}\right) \mathbf{i}+\left(b_{1}-b_{2}\right) \mathbf{j}=\left\langle a_{1}-a_{2}, b_{1}-b_{2}\right\rangle \tag{3}\\
\alpha \mathbf{v} & =\left(\alpha a_{1}\right) \mathbf{i}+\left(\alpha b_{1}\right) \mathbf{j}=\left\langle\alpha a_{1}, \alpha b_{1}\right\rangle \tag{4}\\
\|\mathbf{v}\| & =\sqrt{a_{1}^{2}+b_{1}^{2}} \tag{5}
\end{align*}
$$

If $v=2 i+3 j=\langle 2,3\rangle$ and $w=3 i-4 j=\langle 3,-4\rangle$, find the following.

1. $v+w$
2. $v-w$
3. 3 v
4. $2 v-3 w$
5. $\|\vee\|$

IV. Finding a vector from its Direction and Magnitude

Velocity vector - A vector that represents speed and direction of an object. Force vector - A vector describing the direction and amount of force acting upon an object.
Given the magnitude $\|v\|$ of a nonzero vector v and the direction angle $\alpha, 0^{\circ}<\alpha<360^{\circ}$, between vectors v and i , then: $v=\|v\|(\cos \alpha i+\sin \alpha \boldsymbol{j})$

1. A ball is thrown with an initial speed of 25 mph in a direction that makes an angle of 30° with the positive x-axis. Express the velocity vector v in terms of i and j. What is the initial speed in the horizontal direction? What is the initial speed in the vertical direction?
2. Find the direction angle α for $v=4 i-4 j$.
3. A Boeing 737 aircraft maintains a constant airspeed of 500 mph headed due south. The jet stream is 80 mph in the northeasterly direction.
a) Express the velocity v_{a} of the 737 relative to the air and velocity v_{w} of the jet stream in terms of i and j.
b) Find the velocity of the 737 relative to the ground.
c) Find the actual speed and direction of the 737 relative to the ground.
4. Two movers require a magnitude of force of 300 pounds to push a piano up a ramp inclined at an angle 20° from the horizontal. How much does the piano weigh?

An object in Static Equilibrium: the object is at rest and the sum of all forces acting on the object is zero, a.k.a. the resultant force is zero.
5. A box of supplies that weighs 1200 pounds is suspended by two cables attached to the ceiling. What are the tensions in the two cables?

