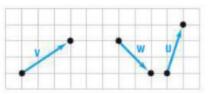
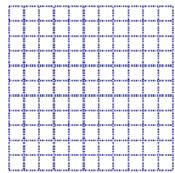

Many concepts in science involve applications of mathematics that measure certain quantities by their magnitude like length, mass, area, temperature, or energy. Only one number is needed to describe a length of 7 inches or 5°C for example. This single quantity is called **scalar**.

There are, however, many applications that involve not only the **magnitude** of an object but also, the **direction** of the displacement.

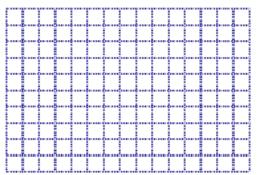
Vector: a quantity that has both magnitude and direction. For example, the flight pattern of a plane, has both speed (magnitude) and direction of travel. Velocity, acceleration, and force are described by both <u>magnitude and direction</u> and are known as vectors.


! All vectors have two things:

direction – follow the arrow


magnitude – the length of the vector

I. Graphing Vectors


Use the vector to graph each of the following vectors.

$$2.2v + 3w$$

II. The Position Vector

To compute magnitude and direction of a vector, we need an algebraic way to describe the vector. The algebraic vector \mathbf{v} is: $\mathbf{v} = \langle a, b \rangle$

 $v = \langle horizontal, vertical \rangle$

Where a and b are real (scalar) numbers and are called the components of the vector.

Vector \mathbf{v} , may be described with initial point P_1 (x_1, y_1) terminal point P_2 (x_2, y_2)

Vector **v**, is equal to the position vector: $\mathbf{v} = (x_2 - x_1, y_2 - y_1)$

Find the position vector \mathbf{v} with initial point (-1, 2) and terminal point (4, 6).

III. Vectors in terms of i and j

A vector of length 1 is called a **unit vector**. Let "**i**" be a unit vector in the x-direction and "**j**" be a unit vector in the y-direction. Any vector in the x-direction can be written as a scalar multiple of **i** and any vector in the y-direction can be written as a scalar multiple of **j**. They are defined as:

$$i = \langle \mathbf{1}, \mathbf{0} \rangle$$
 and $j = \langle \mathbf{0}, \mathbf{1} \rangle$, where $||i|| = \sqrt{1^2 + 0^2}$ and $||j|| = \sqrt{0^2 + 1^2}$.
 $v = \langle a, b \rangle = a \langle 1, 0 \rangle + b \langle 0, 1 \rangle = ai + bj$
Any vector may be expressed in terms of i and i .

A. Algebraic Operations

Vectors may be added, subtracted, or have scalar multiplication. Pretty straight forward, we can treat the numbers as coefficients and i and j as variables.

Let $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} = \langle a_2, b_2 \rangle$ be two vectors, and let α be a scalar. Then

$$\mathbf{v} + \mathbf{w} = (a_1 + a_2)\mathbf{i} + (b_1 + b_2)\mathbf{j} = \langle a_1 + a_2, b_1 + b_2 \rangle$$
(2)

$$\mathbf{v} - \mathbf{w} = (a_1 - a_2)\mathbf{i} + (b_1 - b_2)\mathbf{j} = \langle a_1 - a_2, b_1 - b_2 \rangle$$
(3)

$$\alpha \mathbf{v} = (\alpha a_1)\mathbf{i} + (\alpha b_1)\mathbf{j} = \langle \alpha a_1, \alpha b_1 \rangle$$
(4)

$$\|\mathbf{v}\| = \sqrt{a_1^2 + b_1^2}$$
(5)

If
$$v = 2i + 3j = (2, 3)$$
 and $w = 3i - 4j = (3, -4)$, find the following.
1. $v + w$ 2. $v - w$ 3. $3v$

4.
$$2v - 3w$$
 5. $||v||$

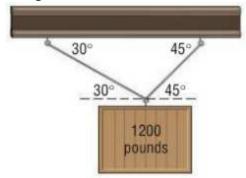
IV. Finding a vector from its Direction and Magnitude

Velocity vector - A vector that represents speed and direction of an object.

Force vector - A vector describing the direction and amount of force acting upon an object.

Given the magnitude ||v|| of a nonzero vector v and the direction angle α , $0^{\circ} < \alpha < 360^{\circ}$, between vectors v and i, then: $v = ||v|| (\cos \alpha i + \sin \alpha j)$

1. A ball is thrown with an initial speed of 25 mph in a direction that makes an angle of 30° with the positive x-axis. Express the velocity vector v in terms of i and j. What is the initial speed in the horizontal direction? What is the initial speed in the vertical direction?


2. Find the direction angle α for v = 4i - 4j.

- 3. A Boeing 737 aircraft maintains a constant airspeed of 500 mph headed due south. The jet stream is 80 mph in the northeasterly direction.
- a) Express the velocity v_a of the 737 relative to the air and velocity v_w of the jet stream in terms of i and j.
 - b) Find the velocity of the 737 relative to the ground.
 - c) Find the actual speed and direction of the 737 relative to the ground.

4. Two movers require a magnitude of force of 300 pounds to push a piano up a ramp inclined at an angle 20° from the horizontal. How much does the piano weigh?

An object in **Static Equilibrium**: the object is at rest and the sum of all forces acting on the object is zero, a.k.a. the resultant force is zero.

5. A box of supplies that weighs 1200 pounds is suspended by two cables attached to the ceiling. What are the tensions in the two cables?

