\qquad

To plot points with polar coordinates it is convenient to use a polar grid. It is sort of like the unit circle superimposed with graph paper.

I. Special Graphs

$\theta=$ constant - graphs a line at angle θ
$r=$ constant - graphs a circle of radius r
Sketch the graph of the equations and express the equations in rectangular coordinates:

$$
\theta=\pi / 3
$$

$$
r=3
$$

II. Graphing a Polar Equation of a Line

Some equations can easily be expressed in rectangular coordinates. If this is the case, then convert to rectangular coordinates. Identify and graph the equation.

1. $\theta=\pi / 4$
2. $r \sin \theta=2$
3. $r \cos \theta=-3$

III. Graphing a Polar Equation of a Circle

Sketch the polar equation (transform the equation into its rectangular form).

1. $r=4 \sin \theta$
2. $r=-2 \cos \theta$

Circles			
Description	Center at the pole, radius a	Passing through the pole, tangent to the line $\theta=\frac{\pi}{2}$, center on the polar axis, radius a	Passing through the pole, tangent to the polar axis, center on the line $\theta=\frac{\pi}{2}$, radius a
Rectangular equation	$x^{2}+y^{2}=a^{2}, a>0$	$x^{2}+y^{2}= \pm 2 a x, \quad a>0$	$x^{2}+y^{2}= \pm 2 a y, \quad a>0$
Polar equation	$r=a, \quad a>0$	$r= \pm 2 a \cos \theta_{1} \quad a>0$	$r= \pm 2 a \sin \theta, \quad a>0$
Typical graph	14	y_{4}	y_{4}

IV. Other Equations

Name	Limaçon (inner loop)	Cardioid	Limaçon (dimple)
Polar Equation	$r=a \pm \mathrm{b} \cos \theta$ $r=a \pm \mathrm{b} \sin \theta$ $a<b$	$r=a \pm \mathrm{a} \cos \theta$ $r=a \pm \mathrm{a} \sin \theta$ $a=b$	$r=a \pm \mathrm{b} \cos \theta$ $r=a \pm \mathrm{b} \sin \theta$ $a>b$
Graph			

I Equations in terms of cosine I
will be symmetrical about the polar axis (horizontal). Equations in terms of sine will be symmetrical about the $\pi / 2$ axis (vertical).
A. Cardioids
$a=b$
distance on axis is 2 a

$r=1+\cos \theta$

$$
r=1-\cos \theta
$$

$$
r=1+\sin \theta
$$

$$
r=1-\sin \theta
$$

1. Graph $r=2-2 \sin \theta$.
$a=$ \qquad $b=$ \qquad
The number indicate a shape of \qquad equation has sine so along \qquad axis
negative means \qquad
length $=$ \qquad

B. Limaçon Graphs
$r=a \pm b \cos \theta$
$r=a \pm b \sin \theta$
if cosine: along polar axis
if sine: along $\pi / 2$ axis
$a>b$ no inner loop $a<b$ inner loop
2. Graph $r=3+2 \cos \theta$

3. Graph $r=1+2 \cos \theta$

V. More Equations

A. Roses

Roses

$r=a \sin n \theta$
$r=a \cos n \theta$
n-leaved if n is odd
$2 n$-leaved if n is even

Graph n-leaved rose.

1. $r=2 \sin 3 \theta$

2. $r=2 \cos 2 \theta$

a = petal length
3. $r^{2}=2^{2} \cos 2 \theta$

C. Spirals

Graphing a Polar Equation (spiral) It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity.
There are several equations that will produce a spiral. The logarithmic spiral $r=e \theta / 5$ may be written as $\theta=5 \ln r$.

Archimedes Spiral is in the form of $r=a \theta$

