6-2 Notes Graphing Polar Equations Pre-Calculus

To plot points with polar coordinates it is convenient to use a polar grid. It is sort of like the unit circle superimposed with graph paper.

I. Special Graphs

- θ = constant graphs a line at angle θ
- r = constant graphs a circle of radius r

Sketch the graph of the equations and express the equations in rectangular coordinates:

 $\theta = \pi/3$

r = 3

II. Graphing a Polar Equation of a Line

Some equations can easily be expressed in rectangular coordinates. If this is the case, then convert to rectangular coordinates.

Identify and graph the equation.

Lines						
Description	Line passing through the pole making an angle α with the polar axis	Vertical line	Horizontal line			
Rectangular equation	$y = (\tan \alpha)x$	x = a	y = b			
Polar equation	$\theta = \alpha$	$r\cos\theta = a$	$r\sin\theta = b$			
Typical graph	ya - x	<i>y</i>	<i>y</i> *			

Name

III. Graphing a Polar Equation of a Circle

Sketch the polar equation (transform the equation into its rectangular form). 1. $r = 4 \sin \theta$ 2. $r = -2 \cos \theta$

Circles					
Description	Center at the pole, radius a	Passing through the pole, tangent to the line $\theta = \frac{\pi}{2}$, center on the polar axis, radius <i>a</i>	Passing through the pole, tangent to the polar axis, center on the line $\theta = \frac{\pi}{2}$, radius <i>a</i>		
Rectangular equation	$x^2 + y^2 = a^2, a > 0$	$x^2 + y^2 = \pm 2ax, a > 0$	$x^2 + y^2 = \pm 2ay, a > 0$		
Polar equation	r = a, a > 0	$r = \pm 2a\cos\theta, a > 0$	$r = \pm 2a \sin \theta, a > 0$		
Typical graph	<i>y</i>	уч х			

IV. Other Equations

Name	Limaçon (inner loop)	Cardioid	Limaçon (dimple)	
Polar Equation	$r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$ $a < b$	$r = a \pm a \cos \theta$ $r = a \pm a \sin \theta$ $a = b$	$r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$ $a > b$	Equations in terms of cosine will be symmetrical about the polar axis (horizontal). Equations in terms of sine will be symmetrical about the π/2 axis (vertical).
Graph		\bigcirc	\bigcirc	

A. Cardioids

a = b distance on axis is 2a

 $r = 1 + \sin \theta$

 $r = 1 + \cos \theta$

 $r = 1 - \sin \theta$

1. Graph r = 2 – 2 sinθ. a = ____ b = ____

The number indicate a shape of _____

equation has sine so along _____ axis

negative means _____

length = _____

B. Limaçon Graphs

r = a ± b cos θ r = a ± b sin θ if cosine: along polar axis if sine: along $\pi/2$ axis

a > b no inner loop a < b inner loop

2. Graph r = $3 + 2 \cos \theta$

3. Graph r = 1 + 2 cos θ

V. More Equations

A. Roses Roses

- $r = a \sin n\theta$
- $r = a \cos n\theta$

n-leaved if n is odd

2n-leaved if n is even

 $r = a \cos 2\theta$ 4-leaved rose

 $r = a \cos 3\theta$ 3-leaved rose

 $r = a \cos 5\theta$ 5-leaved rose

C. Spirals

Graphing a Polar Equation (spiral) It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity.

There are several equations that will produce a spiral. The logarithmic spiral $r = e \theta/5$ may be written as $\theta = 5 \ln r$.

