4-2 Notes – Solving Trig Equations

Name_____

Pre-Calculus

A. Review – NO CALCULATOR. Solve for θ when $0 \le \theta \le 360^{\circ}$.

$$1.\sin\theta = \frac{1}{2} \qquad 2.\sec\theta = 2$$

B. Solving Equations Involving Trig

Solve just like normal equations then find values for x or θ that satisfy the equation. Use "u-substitution" when necessary. (Example #4 & #12) You will have multiple answers.

3. Solve for x when
$$0^{\circ} \le x \le 360^{\circ}$$
.

 $2\sin x + \sqrt{3} = 0$

4. Solve for
$$\theta$$
 when $0 \le \theta \le 2\pi$. Use "u-substitution".
 $2 \cos \theta + 4 = 5$ Let $\cos \theta = u$
 $2u + 4 = 5$
 $2u = 1$
 $u = \frac{1}{2}$ Plug $\cos \theta$ back in for u .
 $\cos \theta = \frac{1}{2}$
So, $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$

5. Solve for x when $0 \le x \le 2\pi$. Use "u-substitution". (There will be 4 answers.) $3sec^2x - 4 = 0$

```
6. Solve for x when 0 \le x \le 2\pi. Use "u-substitution".
|\sin x| = 1
```

7. Solve for x when $0^{\circ} \le x \le 360^{\circ}$. $\sqrt{4 \sin x + 7} = 3$ 8. Solve for x when $0 \le x \le 2\pi$. $2 \tan x - \sqrt{3} = \sqrt{3}$

9. Solve for x when $0^{\circ} \le x \le 360^{\circ}$. $3tan^3x = 3$

10. Solve for x when $0 \le \theta \le \pi/2$. $4 \cos \theta = 2 \cos \theta + 1$

11. Solve for x when $0^{\circ} \le \theta \le 360^{\circ}$. $8tan^2\theta - 2 = 1 - tan^2\theta$

- 12. Solve for x when $0 \le x \le 2\pi$. (4 answers) $sin^3x - \sin x = 0$ Let $u = \sin x$ $u^3 - u = 0$ $u(u^2 - 1) = 0$ u(u + 1)(u - 1) = 0 u = 0 u = -1 u = 1 $\sin x = 0$ $\sin x = -1$ $\sin x = 1$ $x = 0, x = \pi, x = \frac{3\pi}{2}, x = \frac{\pi}{2}$
- 13. Solve for x when $0 \le x \le 2\pi$. (3 answers) $2sin^2x + \sin x - 1 = 0$
- 14. Solve for x when $0^{\circ} \le x \le 360^{\circ}$. (use calculator) $\frac{4 \tan x - 1}{6} = \frac{1 - \tan x}{3}$

15. Solve for x when $0 \le x \le 2\pi$. Use Quadratic formula. $\cos^2 x - 4\cos x = -2$