\qquad

Recall: If a function is one-to-one it has an inverse function (one function undoes the other). To make a function one-to-one, place restrictions on the domain. While trig functions are of course functions, they are not all one-to-one. By placing limits on the domain, a trig function may be forced into being one-to-one. Remember to find the inverse simply switch the x and y values; x is y and y is x. Switch the domain and range.

I. Inverse Sine Function

$\mathbf{s i n}^{-1}$ also known as arcsine written as arcsin

A. Finding the exact value of an inverse sine function we are looking for an angle θ, where $-\pi / 2 \leq \theta \leq \pi / 2$

1. $\sin ^{-1}$ (1)
2. $\sin ^{-1}(-1 / 2)$
3. $\sin ^{-1}(3 / 2)$
B. Approximate values of inverse sine functions may be found using a calculator. Express the answer in radians rounded to 2 decimal places.
4. $\sin ^{-1}(1 / 3)$
5. $\sin ^{-1}(-1 / 4)$
C. In the terms of the sine function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\sin ^{-1}(\sin x)=x & \text { where }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\hline \hline f\left(f^{-1}(x)\right)=\sin \left(\sin ^{-1} x\right)=x & \text { where }-1 \leq x \leq 1
\end{array}
$$

Find the exact value of composite functions.
6. $\sin ^{-1}(\sin \pi / 4)$
7. $\sin ^{-1}(\sin 2 \pi / 3)$

II. Inverse Cosine Function

$\cos ^{-1}$ also known as arccosine written as arcos

i Restrict Cosine's domain to
iallow for an inverse function

I Domain: $[-1,1]$ '
; Range: $[0, \pi]$!
A. Finding the exact value of an inverse cosine function we are looking for an angle θ, where $0 \leq \theta \leq \pi$

1. $\cos ^{-1} 0$
2. $\cos ^{-1}(-\sqrt{2} / 2)$
B. In the terms of the cosine function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\cos ^{-1}(\cos x)=x & \text { where } 0 \leq x \leq \pi \\
f\left(f^{-1}(x)\right)=\cos ^{\left(\cos ^{-1} x\right)}=x & \text { where }-1 \leq x \leq 1
\end{array}
$$

Find the exact value of the composite functions.
3. $\cos ^{-1}(\cos (\pi / 12))$
4. $\cos ^{-1}[\cos (-2 \pi / 3)]$
5. $\cos \left(\cos ^{-1} \pi\right)$
6. $\cos \left(\cos ^{-1}(\sqrt{3} / 2)\right)$

III. Inverse Tangent Function

tan-1 also known as arctangent written as arctan

A. Evaluate the inverse tangent functions; find θ for $-\pi / 2 \leq \theta \leq \pi / 2$

1. tan $^{-1} 1$
2. $\tan ^{-1}-\sqrt{3}$
3. $\tan ^{-1}-20$
B. In the terms of the tangent function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\tan ^{-1}(\tan x)=x & \text { where }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
\hline f\left(f^{-1}(x)\right)=\tan \left(\tan ^{-1} x\right)=x & \text { where }-\infty<x<\infty
\end{array}
$$

IV. Evaluate a trig function involving inverse trig functions.

1. Find the exact value of $\sin \left(\tan ^{-1}(1 / 2)\right)$

- let θ equal the inverse function
- by definition: $\theta=\tan ^{-1}(1 / 2)$ so $\tan \theta=1 / 2$
- set up a triangle in which $\tan \theta=1 / 2$

2. $\cos \left[\sin ^{-1}(-1 / 3)\right]$
3. $\tan \left[\cos ^{-1}(-1 / 3)\right]$
4. $\cos ^{-1}[\tan (-\pi / 4)]$
5. Write a trig expression as an algebraic expression $\sin \left(\tan ^{-1} U\right)$
