\qquad

We have been transforming trig functions with a, b, and d. We now introduce c. Sometimes denoted as Φ.

$!y=a \sin (b x-c)+d$	$y=a \cos (b x-c)+d$

When we transformed our parent functions what did the c value tell us?
ex. $y=(x-3)^{2}$
The same idea applies now. We refer to this horizontal shift specifically as a phase shift when referring to trig graphs. Phase shift is found by: $\frac{c}{b}$

For each function, identify the midline, amplitude, period, key points, and phase shift. Then graph the function.

1. $f(x)=3 \sin (2 x-\pi)$

$$
\begin{array}{ll}
a= & b= \\
c= & d= \\
P d= & K P= \\
P S= &
\end{array}
$$

2. $f(x)=2 \cos (4 x+3 \pi)+1$

$$
\begin{array}{ll}
a= & b= \\
c= & d= \\
P d= & K P= \\
P S= &
\end{array}
$$

