\qquad

I. Vocabulary

Standard Position - An angle is in standard position if its vertex is located at the origin with one ray on the positive x-axis. The ray on the x-axis is called the initial side and the other ray is called the terminal side.

Positive angle - A positive angle is created by rotating counterclockwise: 360 $=1$ counterclockwise revolution

Negative angle - A negative angle is measured in the clockwise direction from the positive horizontal axis: $-360^{\circ}=1$ clockwise revolution
A. Draw each angle.

1. 45°
2. -90°
3. 225°
4. 405°
B. Convert between degrees-minutes-seconds (DMS) and decimal measures for angles.
5. Convert $50^{\circ} 6^{\prime} 21^{\prime \prime}$ to decimal degrees. Round four decimal places.
6. Convert 21.256° to DMS.
Round to the nearest second.

II. Arc Length \& Area of Sectors

A. Length of a Circular Arc

What is the measure of the arc s in the diagram to the left?
Create a proportion relating the ratio of θ to the whole circle which is 2π radians and the ratio of the arc length to the circumference. The
proportion simplifies giving the arc length as:

$$
\frac{\theta}{2 \pi}=\frac{s}{2 \pi r} \quad \rightarrow \quad s=\theta r \quad \text { or } \quad \theta=\frac{s}{r}
$$

$$
\begin{gathered}
\theta \text { must be in } \\
\text { radians! }
\end{gathered}
$$

1. Find the length of the arc of a circle of radius 2 meters subtended by a central angle of 0.25 radian.

B. Area of a Circular Sector

We can find the area of the "slice of pie" or sector with a central angle θ using proportions. Once again we use the ratio of the angle θ to the whole circle which is 2π radians. This is set equal to the ratio of the area of the sector to the area of the circle and simplify.

$$
\frac{\theta}{2 \pi}=\frac{A}{\pi r^{2}} \quad \rightarrow \quad A=\frac{1}{2} r^{2} \theta
$$

2. Find the area of the sector of a circle of radius 2 feet formed by an angle of 30°. Round two decimal places.

