3-1 Notes Angles and Their Measure Pre-Calculus

I. Vocabulary

Standard Position – An angle is in standard position if its vertex is located at the origin with one ray on the positive x-axis. The ray on the x-axis is called the **initial side** and the other ray is called the

terminal side.

Positive angle – A positive angle is created by rotating counterclockwise: $360^\circ = 1$ counterclockwise revolution

Negative angle - A negative angle is measured in the clockwise direction from the positive horizontal axis: -360° =1 clockwise revolution

A. Draw each anale.

1.45°	290°	3. 225°	4. 405°

- B. Convert between degrees-minutes-seconds (DMS) and decimal measures for angles.
 - 5. Convert 50° 6' 21" to decimal degrees. 6. Convert 21.256° to DMS Round four decimal places.

-	<u> </u>	• •	0.								
R	0	Jr	nd	to	the	ne	ear	est	sec	cor	nd

I.	$1^{\circ} = 60'$	I
•		
I.	1′ = 60''	I
·		•

II. Arc Length & Area of Sectors

A. Length of a Circular Arc

What is the measure of the arc s in the diagram to the left? Create a proportion relating the ratio of θ to the whole circle which is 2π radians and the ratio of the arc length to the circumference. The proportion simplifies giving the arc length as: θ must be in

1. Find the length of the arc of a circle of radius 2 meters subtended by a central anale of 0.25 radian.

B. Area of a Circular Sector

We can find the area of the "slice of pie" or sector with a central angle θ using proportions. Once again we use the ratio of the angle θ to the whole circle which is 2π radians. This is set equal to the ratio of the area of the sector to the area of the circle and simplify. .-.-· — · -

$$\frac{A}{\pi r^2} \rightarrow A = \frac{1}{2}r^2\theta$$

2. Find the area of the sector of a circle of radius 2 feet formed by an angle of 30°. Round two decimal places.

Name