2-6a Notes Introduction to Rationals Pre-Calculus

A rational expression is one where two polynomials are in the form of a fraction (dividing two polynomials – one in the numerator and one in the denominator of a fraction.

The key to simplifying rational expressions is to be able to ______. Let's review factoring basics.

GCF	Difference of Squares	X-Factor		
3x ² + 15x	x ² - 4	x ² + 2x – 15		
X-Factor	Combination	Combination		
$3x^2 - 7x - 6$	2x ³ – 18x	$4x^3 - 28x^2 + 48$		

So if we have a rational expression that looks like these, we can simplify it by writing each part as factors. Then we can cancel out common factors (same factor on top and bottom).

$x^2 - 4$	(x+2)(x-2)	(x+2)	$3x^2 - 7x - 6$	(3x+2)(x-3)	(3x+2)
$2x^3 - 4x^2 + 5x - 10$	$-\frac{1}{(2x^2+5)(x-2)}$	$(2x^2+5)$	$x^2+2x-15$	(x-3)(x+5)	(<i>x</i> +5)

Why does this work? Try writing the problem below as factors, to see how canceling out common factors smplifies the problem.

Watch out for this:

$\frac{4}{9} \cdot \frac{15}{28} =$		$\frac{5}{5x} =$	
Example A:	Example B:	Example C:	
$\frac{x^2 + 5x}{x^2}$	$\frac{x^2-5x-6}{x^2-1}$	$\frac{x-3}{x+2} \bullet \frac{x^2 + 5x + 6}{x^2 - 9}$	

Example D:

$$\frac{4x - 2x^2}{x^2 - 5x + 6} \bullet \frac{x^2 - 4x + 3}{2x}$$

To tackle division of rational expressions, change to _____, while you ______ the second expression.

Example E:

$$\frac{8x^2 + 10x - 3}{4x^2} \div (4x^2 - x)$$

Example F:

$$\frac{2x+6}{x^2+x-2} \div \frac{x+3}{x^2+3x+2}$$

This is a ______ fraction, meaning that it is a fraction within a fraction. It's just another way to show division, so treat it like the above examples.

$$\frac{\frac{a+b}{4}}{\frac{a^2-b^2}{4}}$$

Application: The length and width of a rectangle are provided in terms of v. Find the area of the rectangle.

$$\frac{8v - 56}{8v + 48}$$

$$\frac{v^2 + 9v + 18}{8v^2 + 24v}$$