\qquad

I. Rational Functions

When dealing with ratios of integers, they are identified as rational numbers. When we look at ratios of polynomials, we call them rational functions.

A rational function is a function in the form $R(x)=\frac{p(x)}{q(x)}$ where p and q are polynomial functions and $\mathrm{q} \neq 0$. The domain of a rational function is the set of all real numbers except those for which the denominator q is 0 .
A. Find the domain of the rational function.

1. $R(x)=\frac{2 x^{3}-4}{x+5}$
2. $R(x)=\frac{1}{x^{2}-4}$
3. $R(x)=\frac{x^{3}}{x^{2}+1}$
4. $R(x)=\frac{x^{2}-1}{x-1}$
B. Graph and analyze. What happens at $x=0$? As $x \rightarrow 0$? As $x \rightarrow \infty$?
5. $R(x)=\frac{1}{x}$
6. $H(x)=\frac{1}{x^{2}}$
C. Graph the rational function using transformations.
$R(x)=\frac{1}{(x-2)^{2}}+1$

II. Asymptotes

Let R denote a function: If, as $x \rightarrow-\infty$ or as $x \rightarrow \infty$, the values of $R(x)$ approach some fixed number L, then the line $y=L$ is a horizontal asymptote of the graph of R. If as x approaches some number c, the values $|\mathbb{R}(x)| \rightarrow \infty$, then the line $x=c$ is a vertical asymptote of the graph R.

A graph MAY cross a horizontal asymptote, but it will NEVER cross a vertical asymptote.

Oblique

A. Vertical Asymptotes will occur at x-values that make the denominator $=0$.

Find the VAs, if any, of the graph of each rational function.

1. $F(x)=\frac{5 x^{2}}{3+x}$
2. $R(x)=\frac{x}{x^{2}-4}$
3. $H(x)=\frac{x^{2}}{x^{2}+1}$
4. $G(x)=\frac{x^{2}-9}{x^{2}+4 x-21}$
B. For Horizontal \& Oblique Asymptotes we need to compare the degree of the numerator (\dagger) and the degree of the denominator (b).

If $t<b$, HA at x-axis $(y=0)$.
If $\dagger>b$, no HA but could have OA

* If t is exactly 1 degree larger than b, graph has $O A$. Find equation of OA by synthetic or long division, remainder doesn't matter.

If $\dagger=b$, divide leading coefficients to find HA

Find the horizontal asymptotes if any for the graph of:

$$
\text { 5. } R(x)=\frac{x-12}{4 x^{2}+x+1} \quad \text { 6. } H(x)=\frac{3 x^{4}-x^{2}}{x^{3}-x^{2}+1}
$$

$$
\text { 7. } R(x)=\frac{8 x^{2}-x+2}{4 x^{2}-1}
$$

8. $G(x)=\frac{2 x^{5}-x^{3}+2}{x^{3}-1}$
