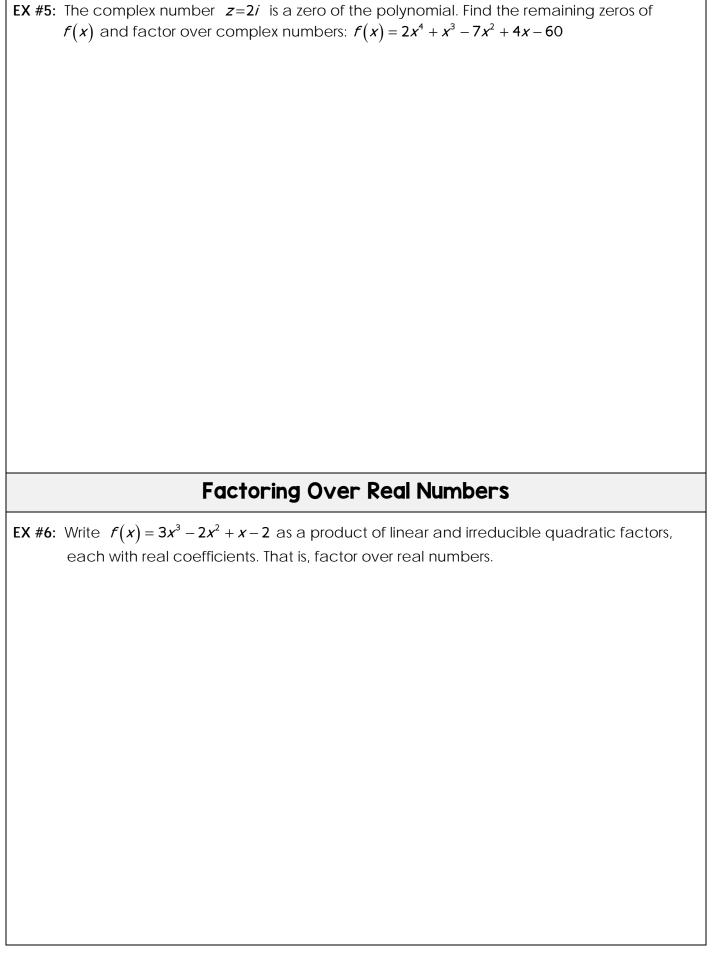
2.5 Complex Zeros and the Fundamental Theorem of Algebra

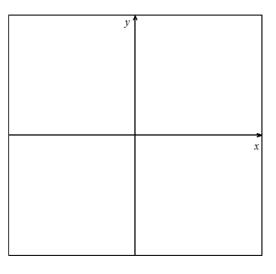
Fundamental Theorem of Algebra		
A polynomial function of <i>x</i> with degree <i>n</i> has <i>n</i> (real and nonreal). Some of these zeros may be repeated.		
Linear Factorization Theorem		
If $f(x)$ is a polynomial function $n > 0$, then $f(x)$ has precisely		
Fundamental Polynomial Connections in the Complex Case		
The following statements about a polynomial function f are equivalent, if k is a complex number:		
1		
2		
3		
Complex Conjugate Zeros		
Suppose that $f(x)$ is a polynomial function with real coefficients. If a and b are real		
numbers with $b \neq 0$, and is a zero of $f(x)$, then		
its is also a zero.		
Fundamental Polynomial Connections		
EX #1: Write the polynomial function in standard form, and identify the zeros of the function and the x-intercepts of its graph. $f(x) = (x+2)(x-i\sqrt{3})(x+i\sqrt{3})$		

Finding a Polynomial Given Complex Zeros


Write a polynomial function of minimum degree in standard form with real coefficients whose zeros include the following:

EX#2:
$$\{-3, 4, (2-i)\}$$

EX #3: x = 1 (multiplicity 2); x=1-i


Factoring a Polynomial with Complex Zeros

EX #4: Find all the zeros of $f(x) = x^5 - 3x^4 - 5x^3 + 5x^2 - 6x + 8$ and factor f(x) over the set of complex numbers.

Sketching A Graph with Repeating Zeros

- **EX #7:** Sketch the graph of the polynomial function with the given zeros, multiplicities, and sign of leading coefficient
 - A. -3 (multiplicity 2); 4 (multiplicity 3); a > 0

B. -1 (multiplicity 2); 3 (multiplicity 2); a < 0

у *	,
	x