Name _____

10-3 Notes Limits at Infinity Pre-Calculus

I. Limits at Infinity

Find		
1 III G	1	1
	lim	lim 1
	nm –	- IIIII -
	$x \to \infty x$	$x \rightarrow -\infty x$

So we get a rule to remember. If k is any positive integer, then:

 $\lim_{x \to \infty} \frac{1}{x^k} = 0 \qquad and \qquad \lim_{x \to -\infty} \frac{1}{x^k} = 0$

Evaluate. 1. $\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$

F I	
: BOBO BOTN EATSDC	
can be applied	

2. $\lim_{x \to \infty} e^x$

3. $\limsup_{x \to \infty} x$

II. Limits of a Sequence

In Unit 9 we studied sequences: $a_1, a_2, a_3, \ldots, a_n$. Using limits we can determine the behavior of a sequence as n becomes large.

Recall: Convergent is when things come together from different directions so they eventually meet. Divergent is when things separate and go in different directions. Well, in sequences the term a_n may converge by approaching a number or it may not ...

1. Find the limit of the sequence. $\lim_{n \to \infty} \frac{n}{n+1}$ 2. Converge or Diverge?

 $a_n = (-1)^n$

3. Find the limit of the sequence given.

$$a_n = \frac{15}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right]$$