\qquad

I. Limits at Infinity

Find

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \quad \lim _{x \rightarrow-\infty} \frac{1}{x}
$$

So we get a rule to remember. If k is any positive integer, then:

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{k}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{k}}=0
$$

Evaluate.

1. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}$
BOBO BOTN EATSDC
can be applied
i.
2. $\lim \mathrm{e}^{\mathrm{x}}$
3. $\lim _{x \rightarrow \infty} \sin x$

II. Limits of a Sequence

In Unit 9 we studied sequences: $a_{1}, a_{2}, a_{3}, \ldots, a_{n,}$. Using limits we can determine the behavior of a sequence as n becomes large.
Recall: Convergent is when things come together from different directions so they eventually meet. Divergent is when things separate and go in different directions. Well, in sequences the term a_{n} may converge by approaching a number or it may not ...

1. Find the limit of the sequence.

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}
$$

2. Converge or Diverge?

$$
\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}}
$$

3. Find the limit of the sequence given.

$$
\mathrm{a}_{\mathrm{n}}=\frac{15}{\mathrm{n}^{3}}\left[\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right]
$$

