\qquad

I. Even \& Odd Functions

A function is even when its graph is symmetric to the y-axis. When the point (x, y) is on the graph, the point ($-x, y$) is also on the graph. $f(-x)=f(x)$
A function is odd when its graph is symmetric to the origin. When the point (x, y) is on the graph, the point $(-x,-y)$ is also on the graph. $f(-x)=-f(x)$ Identify if the function is even, odd or neither.

5. $g(x)=x^{3}-1$
6. $h(x)=5 x^{3}-x$
4. $f(x)=x^{2}-5$
5. (x)
3.

II. Increasing, Decreasing, or Constant

Increasing - slope is positive
Decreasing - slope is negative
Constant - slope is zero, not increasing or decreasing
7. Determine where the function is increasing, decreasing, or constant.
a) Increasing:
b) Decreasing:
c) Constant:

III. Maximum and Minimum

Extreme Value Theorem - If f is a continuous function whose domain is a closed interval [a, $b]$, then f has an absolute maximum and an absolute minimum on [a, b]. Absolute max/min can occur at endpoints.

A local/relative maximum is the highest point on a given open interval.
A local/relative minimum is the lowest point on a given open interval.
8. Determine the local extrema.
a) At what value of x does f have a local maximum? List the local maximum values.
b) At what value of x does f have a local minimum? List the local maximum values.

c) Find where f is increasing.
d) Find where f is decreasing.

Find the absolute extrema.

10.

12. Use a graphing utility to find the relative extrema for $f(x)=6 x^{3}-12 x+5$ on the open interval $-2<x<2$.

IV. Average Rate of Change

Average rate of change $=\frac{\Delta y}{\Delta x}=\frac{\boldsymbol{f}(\boldsymbol{b})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{b}-\boldsymbol{a}}=\boldsymbol{m}_{\text {sec }}$
When a function is graphed and the
average rate of change is
calculated, graphically a line drawn
between $f(a)$ and $f(b)$ is called a
secant line.
13. Find the average rate of change of $f(x)=3 x^{2}$ on the given interval.
a) from 1 to 3
b) from 1 to 5

