I. What is a function?

A. A **relation** is any set of ordered pairs. A **function** is a special kind of relation where each x-value is associated with exactly one y-value. For every input there is exactly one output.

B. Determine whether each equation is a function.

1. $y = \frac{1}{2}x - 3$

C. For the given function evaluate $f(x) = 2x^2 - 3x$ for:

3. f(3)

4. f(x) + f(3)

5. 3f(x)

7. -f(x)

8. f(3x)

9.
$$f(x + 3)$$

10.
$$\frac{f(x+h) - f(x)}{h}$$

II. Domain

- A. Constraints
 - denominator cannot equal 0
 - anything under a square root must be greater than or equal to 0
- if no domain is specified, then the domain will be taken to be the largest set of real numbers for which the equation defines a real number
 - B. Find the domain, use interval notation.

11.
$$f(x) = \frac{x+4}{x^2-2x-3}$$

12.
$$g(x) = x^2 - 9$$

13.
$$h(x) = \sqrt{3 - 2x}$$

C. If we have two functions, we can use different techniques to combine them into one.

f+g	(f+g)(x) = f(x) + g(x)	Domain: f∩g
f – g	(f-g)(x) = f(x) - g(x)	Domain: f∩g
f · g	$(f \cdot g)(x) = f(x) \cdot g(x)$	Domain: f∩g
f g	$\left(\frac{f}{g}\right)(x) = f(x) \cdot g(x)$	Domain: $\{x \mid g(x) \neq 0\}$, \cap domain of $f \cap$ domain of g

D. Combinations of functions and their domains.

Let
$$f(x) = 2x^2 + 3$$
 and $g(x) = 4x^3 + 1$. Find the functions and determine their domains.
14. $(f+g)(x)$

17.
$$\left(\frac{f}{g}\right)$$
 (x)

III. Graphs of Functions

A. Vertical Line Test – the graph of a function cannot contain two points with the same xcoordinate and different y-coordinate.

Identify the graphs that represent a function and the domains for all.

18.

B. Obtaining information from the graph of a function

- a) What are f(0), $f(3\pi/2)$, and $f(3\pi)$?
- b) What is the domain of f?
- c) What is the range of f?

- d) List the intercepts.
- e) How many times does the line y = 2 intersect the graph?
- f) For what values of x does f(x) = -4?
- g) For what values of x is f(x) > 0?
- C. Obtaining Information about the graph of a function
 - 23. Consider the function: $f(x) = \frac{x+1}{x+2}$
 - a) Find the domain of f.

- b) Is the point $(1, \frac{1}{2})$ on the graph of f?
- c) If x = 2, what is f(x)? What point is on the graph of f?
- D. Average Cost Function
 - 24. The average cost \overline{C} of manufacturing x computer per day is given by the function $\overline{C}(x) = 0.56x^2 34.39x + 1212.57 + \frac{200000}{x}$
 - a) Determine the cost of manufacturing 30 computers in a day
 - b) 40 computers

- c) 50 computers
- d) Graph the function $\overline{\mathbb{C}} = \overline{\mathbb{C}}(x)$, $0 < x \le 80$
- e) Which value of x minimizes the average cost?