0-1 Notes Things We Already Know Pre-Calculus

I. Polynomials

- a) degree of a polynomial -
- b) leading coefficient -

A. Special Products

Difference of Squares	$(x - a) (x + a) = x^2 - a^2$
Perfect Squares	$(x + a)^2 = x^2 + 2ax + a^2$ $(x - a)^2 = x^2 - 2ax + a^2$
Perfect Cubes	$(x + a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$ $(x - a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$
Difference of Cubes	$(x - a) (x^2 + ax + a^2) = x^3 - a^3$
Sum of Cubes	$(x + a) (x^2 - ax + a^2) = x^3 + a^3$

B. Multiply

1. (x-3)(x+3)

2. (x + 2)²

3. $(2x + 1)(3x + 4)$	4. $(x-2)(x^2+2x+4)$

C. Factor

5. x⁴ – 16

6. x³ – 1

7. $9x^2 - 6x + 1$ 8. $x^2 + 4x - 12$

9. $3x^2 + 10x - 8$ 10. $x^3 - 4x^2 + 2x - 8$

D. Simplifying Rational Expressions

11.	x ²	t	4x	+	4
	x ²	+	3x	+	2

$$12. \frac{x^3 - 8}{x^3 - 2x^2}$$

II. Quadratic Formula

Consider $ax^2 + bx + c = 0$ if $b^2 - 4ac < 0$, there are no real solutions if $b^2 - 4ac > 0$, real solutions are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

·················	ı
The discriminant refers to	
b² – 4ac	
~ . – . – . – . – . – . – . – . – .	

13. Find the solutions, if any, of the equation: $3x^2 - 5x + 1 = 0$

III. Interval Notation Closed Interval [a,b] Open Interval (a,b) \leq or \geq closed circle < or > open circle ±∞ are always open *connect **OR** statements with a U* Write each inequality using interval notation. $|4, 1 \le x \le 3$ 15. -4 < x < 0 16. x > 5 $17. x \le 1$ 18. x < -5 or $x \ge 4$ 19. -6 < x < 0 or $x \ge 5$ 20. 21. ←