AP Calculus Exam Review Topics Particle Motion

Position (Distance), Velocity, and Acceleration

Position Function: s(t) or x(t) motion along the x-axis or y(t) motion along the y-axis.

Average Velocity: $m_{sec} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$

Instantaneous Velocity: $v(t) = s'(t) = \frac{ds}{dt}$

- Motion to the right or up is considered positive \rightarrow , then v(t)>0 and distance s is increasing
- Motion to the left or down is considered negative ←, then v(t) < 0 and distance s is decreasing.

Acceleration: $a(t) = v'(t) = \frac{dv}{dt}$ or $a(t) = s''(t) = \frac{d^2s}{dt^2}$

- If a(t) and v(t) have same signs, then speed of P is increasing or speeding up
- If a(t) and v(t) have opposite signs, then speed of P is decreasing or slowing down.
- If s is a continuous function of t, then P reverses direction whenever v is zero and a is different from zero. NOTE: zero velocity does not necessarily imply a reversal in direction.

Instantaneous speed: |v(t)|

- 1. If the position of a particle is $s(t) = \frac{t^3}{3} 3t^2 + 4$, find the velocity and position of the particle when its acceleration is zero.
- 2. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 21t^2 + 72t 53$. At what time t is the particle at rest?

3. The acceleration of a particle moving along the x-axis at time t is given by a(t) = 6t - 2. If the velocity is 25 when t = 3 and the position is 10 when t = 1, Find the position function, x(t).

- 4. A particle moves along a straight line is given by the position function $s(t) = 2t^3 9t^2 + 12t 4$, where $t \ge 0$.
 - A. Find all *t* for which the velocity is increasing.
 - B. Find where the speed of the particle is increasing.
 - C. Find the speed when t = 1.5
 - D. Find the total distance traveled between t = 0 and t = 4.
- 5. A particle moves in a straight line with velocity $v(t) = 4t^2$. How far does the particle move between times t = 1 and t = 2?
- 6. The graph of the position function of a moving particle is shown at right.
 - A. What is the particle's position at t = 5?
 - B. When is the particle moving to the left? Justify.
 - C. When is the particle standing still?

- D. When does the particle have the greatest speed? Justify.
- E. What is the net change in position of the particle?
- 7. The velocity function of a particle is shown, at right.
 - A. When does the particle reverse direction? Justify.
 - B. When is the acceleration zero? Justify.
 - C. When is the speed the greatest? Justify.

